Data Vault: Como Usar – Errata

Meu grande amigo e co-autor do PnP, Cesar Domingos, me mandou um e-mail com duas dúvidas:

Fala Fábio,

Tudo bem?

Tô vendo uns posts seus sobre Data Vault e fiquei com dúvida em um.

https://geekbi.wordpress.com/2016/05/25/data-vault-como-usar/

Na parte do Modelo Completo, onde tem o desenho, a tabela s_l_empregados_pedidos não deveria estar linkada à tabela h_pedidos? Ou se não for na h_pedidos, não deveria existir uma tabela hub entre ela e a l_empregados_pedidos?

Fiquei meio perdido ali. Você tem algum exemplo com dados?

E uma outra pergunta. O que vai exatamente no campo Record Source? O nome da tabela de origem?

Abraços,

Cesar Domingos
Vida corrida de Cesar Domingos
Consultor Linux e BI
LPIC-3 e RHCE

Fui ver, e ele tem razão. Naquele post, a função da tabela s_l_empregados_pedidos não está clara, até porque existe um erro também. Neste post completo a explicação, explicitando o que eu queria fazer e mostro uma correção possível.

O Problema

A metodologia de modelagem de dados para Data Vault define três tipos principais de tabelas: hub, links e satélites. Hubs registram conceitos de negócio, como vendedor, cliente e produto. Links registram relacionamentos entre conceitos de negócios, ou seja, entre hubs. Por exemplo, se um vendedor cuida de um certo cliente, então podemos definir um link entre os hubs de vendedor e cliente.

Satélites guardam os atributos de hubs e links. Se o cliente é um hub, um satélite de cliente contém, por exemplo, seu endereço, sua data de nascimento, sua ocupação e outros dados.

A figura da qual o Cesar falou mostrava dois hubs, empregados e pedidos, e um link entre os dois:

As tabelas combinadas no modelo.
As tabelas combinadas no modelo.

Além disso, ela também mostra um satélite para hub empregados, e um para o link empregado-pedido. E isso está errado!

Sim, veja: satélites contêm atributos de um hub ou de um link. A tabela s_l_empregados_pedidos é um (s_)atélite pertencente ao (l_)ink empregados_pedidos. Mas olhe que atributos esse satélite tem:

  • data_pedido
  • pagamento_tipo

De quem são esses atributos? Data do pedido é um atributo do… pedido. E tipo de pagamento? Também! Ora, se são atributos do pedido – e não da relação entre pedido e vendedor – então esse satélite é do hub pedido, e não do link empregado-pedido! Por isso esse satélite está errado.

Para estar correto ele precisaria conter algum atributo da relação, do link. Esse modelo não é um bom caso para um exemplo de satélite de link, que era a minha intenção original.

A Solução

A mensagem que eu queria passar precisa de um modelo ligeiramente diferente:

O modelo corrigido.
O modelo corrigido.

Agora temos um novo hub, cliente. Poderíamos ter seu respectivo satélite, mas seria redundante, pois já temos um exemplo de satélite de hub.

Nesta empresa, cada cliente é atendido por um único vendedor ou gerente, que é o dono da conta, como acontece em um banco, por exemplo. Em um banco, todo cliente possui um gerente. Esse relacionamento aparece como um novo link, entre clientes e empregados.

Como dizia uma propaganda de banco, o tempo passa, o tempo voa. Um gerente muda de agência, outro muda de emprego, entram novos gerentes, chegam clientes de outras agências, clientes vão embora… Conforme o tempo passa, a relação cliente-gerente muda. Pior ainda: pode ir e voltar, ou seja, um cliente pode estar com um gerente hoje, outro daqui um mês e daí no ano seguinte volta a estar sob seu primeiro gerente.

O link não possui data de validade. Ele não possui nada além de data de criação e sistema de origem, aliás. Como, então, saber qual é o gerente atual de cada cliente? Ou que gerente teve que clientes durante um certo período?

Um satélite de link, justamente como mostrado na figura anterior, resolve essa situação: cada vez que o link sofre uma atualização, o satélite versiona sua data de validade. Resumindo:


Porque um link pode ter um satélite? Por que a relação entre dois hubs pode mudar ao longo do tempo, e a única forma de saber quais estão ativas, hoje, no sistema de origem é usando um satélite.


Evidentemente, um link pode ter outros atributos além de período de validade. Exemplo? Pense nos itens de um pedido, ou seja, os produtos que o cliente comprou naquele pedido. Esses itens são registrados no DV como um link entre o hub pedido e o hub produto. Agora, os detalhes de cada item, ou seja, a quantidade, o valor pago etc. são registrados como satélites desse link.

Record Source??

Quanto à segunda pergunta, o que vai no campo Record Source? Bom, o campo RSRC recebe o nome do sistema de origem, não da tabela. Como as tabelas, em princípio, fazem a integração dos dados, o campo indica em que sistema foi identificado aquele elemento – hub, link ou satélite – pela primeira vez. Como as tabelas hub e link são carregadas um sistema de cada vez, o campo RSRC indica, no fundo, que sistema foi carregado primeiro, já que ele não é atualizado mesmo que o campo seja encontrado em outro sistema, com o valor idêntico.

Esse campo tem um pouco mais de utilidade para satélites.

Já passei por situações em que era fundamental separar os dados dentro do satélite por sistema de origem. Foi com o Zabbix: um DV foi construído para integrar 11 Zabbixes. Como era tudo igual, tínhamos apenas uma tabela de satélite para cada item. Como o mesmo item podia aparecer em dois ou mais Zabbixes diferentes, o satélite do Zabbix 1 podia ser encerrado se o mesmo item existisse em qualquer outro Zabbix. O mesmo aconteceria com o segundo Zabbix a ser carregado e assim por diante e depois se repetindo desde o início. A única forma de resolver foi filtrando o satélite pelo RSRC, um para cada Zabbix. ;-)

Anúncios

Nadando em Lagos de Dados

Para escrever meu primeiro post sobre Data Lake eu pesquisei sobre o assunto. Abri o Firefox e saí fuçando o mundo com o Google. Achei alguns artigos interessantes, até que um deles matou o assunto e fiz o post. Eu peguei o restante das pesquisas, dei uma passada d’olhos e, como não achasse nada muito divergente daquilo, descartei.

Limpando meus papéis eu achei um dos artigo que eu separara para ler com mais calma, chamado – que criativo! – DataLake, publicado pelo Martin Fowler em pessoa, em fevereiro de 2015.


Ele se autodefine como “author, speaker, and loud-mouth on the design of enterprise software”, ou em bom português, “autor, palestrante e tagarela sobre o design de software corporativo”.

Eu sou um fã de seu trabalho e já li muitos livros dele e da série Signature, a maioria através Addison-Wesley. Ele é muito bom, e é preciso que se destaque isso: em desenvolvimento de software. Ele nunca publicou ou palestrou sobre BI. O mais perto que ele chegou foi um livro sobre NoSQL escrito em parceria e, pelo visto, este artigo. Por mais que eu o respeite em seu campo, não posso ter o mesmo sentimento quando ele atua fora de sua área. Neste caso o que ele escreve está mais para uma visão multidisciplinar e informada que um comentário de especialista no assunto.


E não é que tem ali uma coisa que eu não tinha notado? Algo que parcialmente redime o conceito de Data Lake e confirma a importância de Data Vault. Vou pegar o assunto do começo, desenvolver o tema e, na conclusão, mostro o que me escapou antes. Acredito que isso vai ajudar a entender melhor tanto o conceito e a utilidade de um Data Lake, quanto a verdadeira natureza de ambos – Data Lake e Data Vault.

Despensa, Cozinha e Salão

Não deixe de ler o artigo, que é muito bem escrito e é do próprio Martin Fowler. Ele começa:

Data Lake é um termo que apareceu nesta década para descrever um importante componente do encanamento analítico no mundo do Big Data. A idéia é ter um único depósito para todos os dados crus que qualquer um na organização possa precisar para análise. Normalmente o povo usa Hadoop para trabalhar os dados no lago, mas o conceito é mais amplo que meramente Hadoop.

Eu saí pulando pelo artigo, da primeira vez, e do meio dele achei o que eu queria ouvir (ler!):

O Data Lake não deve ser acessado diretamente com frequência. Pelo fato de os dados serem crús, você precisa de um bocado de habilidade para tirar qualquer sentido deles. Você tem relativamente pouca gente que trabalha no Data Lake, e conforme eles descobrem visões úteis genericamente, eles podem criar Data Marts cada um do qual com um modelo específico para um único bounded context. Daí, um número grande de usuários podem tratar esta “loja a beira-rio” como uma fonte de dados fidedigna para aquele contexto.

No original: The data lake shouldn’t be accessed directly very much. Because the data is raw, you need a lot of skill to make any sense of it. You have relatively few people who work in the data lake, as they uncover generally useful views of data in the lake, they can create a number of data marts each of which has a specific model for a single bounded context. A larger number of downstream users can then treat these lakeshore marts as an authoritative source for that context.

Neste ponto eu parei de ler e fui escrever aquele post. Quando eu retornei e reli este artigo inteiro, eu notei a primeira relação desta visão de Data Lake com um Data Vault: assim como o proposto aqui por Fowler, um Data Vault não é uma estrutura para acesso direto. Os dados de um DV precisam ser refinados para uma área de apresentação, para aí então serem consumidos. Usando a metáfora de restaurante do Kimball, um Data Vault é a despensa, e tanto o DV quanto o Data Lake precisam passar por uma cozinha que deve preparar os dados para consumo pela clientela.

Aff… Medo de perder o contato com a realidade com tantas metáforas… Enfim, em frente.

Uma Rosa por Qualquer Outro Nome

Não bastasse essa semelhança, existe um outro conceito amarrado ao Data Vault que aparece no post do Fowler: o bounded context, que corresponderia a um conceito meio obscuro em DV, o Unit of Work.

Primeiro, o que é bounded context? A imagem abaixo dá um exemplo:

Ilustração do conceito de contexto limitado - bounded context.
Ilustração do conceito de contexto limitado – bounded context.

Agora a definição de bounded context:

Bounded Context is a central pattern in Domain-Driven Design. It is the focus of DDD‘s strategic design section which is all about dealing with large models and teams. DDD deals with large models by dividing them into different Bounded Contexts and being explicit about their interrelationships.

Ou, em tradução livre, “contexto limitado é um padrão central em Domain-Driven Design. É o foco da estratégia de design, que mostra como lidar com grandes modelos e equipes. DDD lida com modelos grandes dividindo-os em diferentes contextos limitados, sendo explícito em seus inter-relacionamentos”.

Em outras palavras, o tal do “contexto limitado” que o Fowler usa para dar sentido aos dados consumidos do Data Lake é similar ao conceito de orientação a assunto, subject oriented, do Inmon e [Kimball][dmmanifesto_bitly]:

“(…)what a data warehouse is – a subject oriented, nonvolatile, integrated, time variant collection of data in support of management’s decisions(…)”

Como o próprio Linstedt (o criador do Data Vault) insiste na necessidade de um área de apresentação de dados, tanto o conceito de “orientação por assunto” ou “limitação de contexto” se aplicam ao Data Vault! Mas há algo mais: existe um conceito pouco mencionado chamado Unit of Work (UoW), ou “Unidade de Trabalho”.

Conceito de UoW ilustrado: cada circunferência representa uma "unidade", que se integra a conceitos vizinhos.
Conceito de UoW ilustrado: cada circunferência representa uma “unidade”, que se integra a conceitos vizinhos.

Eu revi os livros e fiz uma busca pela Internet, mas não achei nada definitivo sobre o assunto. Este post foi feito por um dos alunos do Hans Hultgren, que parece ter sido o único a avaliar o conceito do ponto de vista de modelagem. Isso seria a definição de UoW:

  • A Unit of Work defines a correlated set of data;
  • A Unit of Work keep things together;
  • A Unit of Work establishes consistency between arriving data and data stored in the Datavault links;
  • UOW should be consistent with the (Enterprise wide) business keys.

Resumindo e traduzindo, traduzindo e resumindo, uma Unidade de Trabalho segundo Hans Hultgren é:


Um conjunto de dados correlacionados entre si, que faz sentido apenas quando estão juntos e representam aspectos do negócio.


Nest link e neste outro link esse conceito aparece de novo, mas sempre jogados, sem aprofundamento.

Então temos três conceitos:

  • O clássico subject oriented, da área de DW;
  • O bounded context herdado da área de desenvolvimento de sistemas;
  • O misterioso Unit of Work, visto em textos de Data Vault.

E todos eles querem dizer praticamente a mesma coisa: um conjunto de dados relacionados entre si, que representam a realidade da organização tal como foi capturada pelos sistemas informatizados.

Romeu & Julieta. Quê?! Shakespeare de novo, uai! Peguei gosto. :-)
Romeu & Julieta. Quê?! Shakespeare de novo, uai! Peguei gosto. :-)

Esta bela imagem foi retirada da Wikipedia.

Juliet:

‘Tis but thy name that is my enemy;
Thou art thyself, though not a Montague.
What’s Montague? It is nor hand, nor foot,
Nor arm, nor face, nor any other part
Belonging to a man. O, be some other name!
What’s in a name? that which we call a rose
By any other name would smell as sweet;
So Romeo would, were he not Romeo call’d,
Retain that dear perfection which he owes
Without that title. Romeo, doff thy name,
And for that name which is no part of thee
Take all myself.

W. Shakespeare, Romeu and Juliet

Portanto temos mais um tema em comum entre a visão de Data Lake de Martin Fowler e os conceitos de um Data Warehouse: o conjunto de dados correlacionados entre si.

Mesmo Assim…

… Fowler comete alguns equívocos:

  • Ele afirma que modelar o dado na entrada é um beco sem saída. De fato, usando modelo dimensional ou a terceira forma normal, não há solução possível. Cedo ou tarde esses modelos abrem o bico e quebram. Eu já discuti isso aqui e a conclusão foi justamente que um Data Vault supera essa limitação;
  • Ele diz que qualidade de dados é um problema, primeiro porque pode ser difícil equalizar a qualidade entre fontes diversas, e depois porque Data Mining (ele não usa esse termo, mas é disso que ele fala) precisa dos dados sujos. Ele tem razão e está errado nos dois casos, pois um modelo dimensional, que é feito para apresentação, guarda dados limpinhos e cheirosos, mas não um Data Vault. Um DV guarda 100% dos dados tal como vêm dos sistemas de origem, tanto que uma das premissas é que possamos reconstruir o estado do sistema de origem usando o DV e ter 100% de auditabilidade;
  • Aceita que o sistema de origem pode e deve mudar, afirma que o Data Lake deve guardar tudo e nunca apagar nada, mas deixa em aberto como gerenciar a associação entre as diversas capturas ao longo do tempo e a variação de esquema no sistema de origem. Quer dizer, até entende essa necessidade – uma coisa básica em todo DW – mas não tem idéia de como deve ser feito. Apesar de um modelo dimensional e um na 3NF poderem assimilar essas mudanças, um Data Vault é a única modelagem que aguenta.

E, vamos reconhecer, ele diz uma coisa muito muito bacana: You should use a data lake for analytic purposes, not for collaboration between operational systems. Ele afirma que trocas de dados transacionais entre sistemas devem ser feitas usando tecnologias como chamadas HTTP RESTFul e não via DW/DL/WH(atever). Finalmente! Acredite se quiser, tem gente que vê essas tecnologias de BI/DW como respostas para toda e qualquer necessidade. Absurdo! Mais um ponto para o Sr. Fowler.

Conclusão

É isso que conseguimos quando pegamos profissionais inteligentes, altamente gabaritados e humildes1 como Martin Fowler. Ele conseguiu enxergar na definição do James Dixon, da Pentaho, um componente do cenário de análises de dados de uma organização. Até então, eu via no conceito Data Lake apenas um departamento de marketing forçando a barra para vender software.

Mas o resultado final do post do Fowler é muito maior que seu conteúdo:

Data Lake Data Vault
Dados crús Dados crús
Precisa destilar para consumir Precisa destilar para consumir
Context bounded Subject oriented

PQP DE RODINHA!!!

O que o artigo dele coloca é de uma obviedade cristalina, e por isso mesmo nós, gente comum, deixamos passar:


DATA LAKE = DATA VAULT


Só o gênio dele para trazer essa relação à tona.

Então, da próxima vez que aventarem um Data Lake do seu lado, responda: “show! me dê o curso do Linstedt, o Wherescape e vamos começar!”

;-)


  1. Para mim é inconcebível um cara da área dele falar sobre outro assunto com tanta propriedade sem ter estudado e se consultado com um monte de livros e pessoas e ter ouvido essas pessoas. A lista de agradecimentos dele, ao final de seu artigo, reforça minha certeza. 

Ladyvaulk – O Feitiço de Dataváulquila

Faz uns dois anos, e começou assim: minha mão estava coçando para testar Data Vault. Eu tinha feito alguns experimentos, tinha implementado um caso pequeno, mas ainda queria explorar mais. Queria um volume maior, mais complexidade, algo mais difícil.


Cuidado com o que você deseja, porque pode conseguir.


E eu consegui. Quem mandou desejar? Um dos softwares que o SERPRO usa é o Zabbix. Resumidamente, ele server para monitorar ativos, como roteadores, servidores e hubs, coletar métricas do parque informatizado e assim por diante. Consulte a página do projeto Zabbix para saber mais.

Como o SERPRO é uma coisa imensa, tudo está sempre no limite, no máximo, no maior volume, no mais complicado. São milhares de máquinas, dezenas, se não centenas de redes e sub-redes, kilômetros de cabos e tudo mais. Não vou entrar em detalhes técnicos para não correr o risco de falar besteira mas, resumidamente, o povo super-criativo conseguiu botar o esquema todo para a funcionar dentro do que era possível e desejável. Há um vídeo com uma apresentação sobre esse assunto neste link, feita por um dos empregados do SERPRO.

Uma das soluções adotadas passava por uma concentração de dados, que era atualizada periodicamente e servia para apresentar certos dados coletados pelo Zabbix.

Enter Linstedtman!

A pessoa responsável por essa necessidade foi aluna em um dos meus treinamentos de Pentaho, e veio me procurar imaginando se o PDI não poderia ajudar nesse caso. Afinal, consolidar dados é justamente a função dele.

As atualizações precisavam ocorrer a cada 30 minutos, no máximo, ou idealmente a cada 5 minutos ou menos. Apesar do grande espalhamento do sistema, como o volume dos dados capturados era, em si, até modesto, a baixa latência do refresh não era um problema.

O que realmente dava trabalho era a integração dos dados. Poderíamos, por exemplo, modelar os dados em uma estrela dimensional, definindo os atributos de interesse como dimensões e adotar uma fato artificial para correlacionar os dados entre si. Daria certo mas, depois de algumas mudanças nas fontes dos dados, as tabelas dimensionais acabariam ficando complicadas demais. Ou seja, logo no início do projeto daríamos de cara justamente com o ponto fraco da metodologia – a dificuldade de manutenção. Não era uma opção.

Poderíamos simplesmente replicar o layout de origem, mas isso implicaria em capturar os dados em uma granularidade confusa e, de novo, na primeira alteração na origem, quebraria todo histórico.

Não havia alternativa. Eu não queria admitir que estava usando os problemas como justificativa, mas no final, os problemas justificaram mesmo a escolha óbvia.

Usar um Data Vault. :-)

The Curse

Como havia uma certa urgência, trabalhamos em equipe: eu analisava os sistemas de origem para desenhar o Data Vault, e ia tirando dúvidas sobre os conceitos de negócio com os especialistas. Em pouco tempo (duas semanas, se não me falha a memória), foi montado o diagrama de tabelas, os modelos de transformação PDI e, com isso, um processo de ETL completo, de cabo a rabo, saiu do nada.

Como não era um grande volume de dados, a primeira carga levou coisa de uns trinta minutos, um pouco menos que isso. A partir da segunda carga, o processo de ETL terminava em menos de um minuto, graças ao fato de o DV usar CDC para tudo. Quando a rede está muito lenta, leva quase três minutos. Finalmente, por garantia, decidiu-se manter uma latência de 30 minutos (i.e. meia-hora), que dá uma boa margem para falha e recuperação, e ainda atende a necessidade.

E isso tem funcionado nesses últimos dois anos, sem parar, sem falhas, sem soluços, liso como gelo. De vez em quando aparece uma situação nova, e toca lá eu ir atrás de entender como usar Data Vault para resolver.

Um dia destes, batendo-papo e conversando sobre o projeto, a minha ficha caiu.

Sabe, eu não implementei esse lance – eu apenas desenhei um template, um gabarito de transformações para hubs, links, satélites e satélites de links. Nem tampouco desenhei o diagrama de dados: passei as regras de modelagem para a pessoa e deixei-a desenhar sozinha. Eu revisava tudo e corrigia os erros cometidos, mas eu mesmo não pus um dedo no processo de ETL!

É verdade que eu montei a configuração do PDI, configurei a captura de logs de cada transformação, e ainda montei um job que chama tudo. Mas de novo: montei na minha máquina, mandei para o projeto, expliquei como instalar no servidor e não fiz mais nada.

E tudo ia crescendo, ganhando tabelas, coletando dados… E a coisa rodando, e o monstro ficando maior, e maior e novos problemas aparecendo e eu só dizendo o que fazer. No máximo eu examinava os dados remotamente, para descobrir porque isso ou aquilo não estava dando certo, diagnosticava e, quando muito, corrigia os templates. A pessoa do projeto regerava as transformações problemáticas e tudo ia em frente.

Vocês não perceberam ainda né? Eu também demorei:


O projeto foi completamente, totalmente, 100%-mente construído, implementado e está sendo gerenciado por um profissional que não criou nada daquilo.

O projeto foi completamente, totalmente, 100%-mente construído, desenhado e planejado por um profissional que não implementou uma única transformação!


Sacaram? Eu não repeti a mesma frase duas vezes, leiam de novo.

Vou escrever ao contrário e vamos ver se fica mais claro:


O grau de automação do desenvolvimento foi tão grande, e em nível tão detalhado e profundo que a construção do modelo de dados e processo de ETL foi feito por um profissional que ignorava quase que completamente a técnica (DV) por trás.

E mais: a flexibilidade e resiliência da Metodologia de Data Vault é tão grande que foi possível desenvolver tudo – modelo e ETL – entendendo quase nada do negócio!


Nossa ignorância mútua dos problemas um do outro só não era total porque aos poucos fomos pegando partes da coisa – eu entendendo um pouco de Zabbix e o outro lado um pouco de DV e PDI. Mas nunca precisamos explicar nada sobre os detalhes de nada um ao outro!!!!!!!

:-O

Conclusão

Na esbórnia cultural que foi a década de 80, um dos filmes mais aclamados foi Ladyhawk, que contava a história de um casal amaldiçoado por um sacerdote malévolo. A maldição jogada nos dois fazia com que nunca se vissem, a não ser por uns breves segundos ao anoitecer e ao raiar do dia. Esse era o tal “Feitiço de Áquila”, que o nome do lugar: durante o dia a mulher era um gavião, e durante a noite, quando ela voltava à forma humana, o cara virava um lobo.

Preciso pedir perdão a vocẽs, porque foi mais forte que eu. Não deu para resistir.

Eu tive que brincar com isso.

A narrativa épica de um projeto de sucesso na era ágil! Quem projetou o ETL não implementou, e não sabia nada do negócio, enquanto que quem entendia tudo do negócio não sabia nada nem do modelo de dados, nem do ETL que estava  implementando com as próprias mãos (e um monte de processos automatizados!)

Uma equipe que nunca se vê, um projeto conhecido metade por cada um, que ninguém sabe por inteiro! Essa é a história de…

Ladyvaulk – O Feitiço de Dataváulquila!!!

Preciso concluir?? Não é à toa que existem, hoje, ferramentas como Wherescape e Attunity! Data Vault é uma coisa tão bombástica que um só “arquiteto”, como eu, pode cuidar de muitos projetos ao mesmo tempo, cada qual com UM – permita-me frisar: UM! – profissional de dados do outro lado.

AI MEUS SAIS!
AI MEUS SAIS!

Traduzindo: uma equipe de arquiteto mais alguns implementadores pode cuidar de muitos Data Vaults. É uma eficiência simplesmente impensável em qualquer outra metodologia!!

Claro que a realidade não é tão rósea. Para começo de conversa, os dados precisam ser extraídos do Data Vault, preparados e só então consumidos. Isso dá trabalho, mas mesmo assim nem de longe é o mesmo trabalho que dá construir um ETL para um modelo dimensional carregado diretamente a partir da fonte.

É isso. Até a próxima! :-)


Eu rio toda vez que falo Dataváulquila em voz alta. Vamos, tentem! Não me deixem pagando este mico sozinho!… :-D

Férias = Livros!

Eu sou daqueles nerds (geek, please!) que adora enfiar o nariz em um livro e sair só quando não der mais para segurar a fome ou qualquer outro chamado da natureza. Não deu para fazer isso nessas férias, claro, não consigo fazer isso desde que passei no vestibular. Mas eu consegui começar a ler vários! Achei todos muito interessantes, e recomendo!

Análise Bayesiana

Em Data Mining existem muitas técnicas para analisar dados. Uma das mais úteis é justamente a Análise Bayesiana. Sabendo disso, e tendo criado vergonha na cara, decidi ir atrás de um livro sobre o assunto. Como essa matemática toda me mete medo, eu procurei um com capa fofinha.

Não se deixe enganar pela capa fofa, esse livro morde!
Não se deixe enganar pela capa fofa, esse livro morde!

Grande erro!! É um tijolo com quase 800 páginas, que além de explicar a técnica e a teoria, inclui tutoriais em R, Jags e muitas outras coisas legais. Você pode encontrar o Doing Bayesian Data Analysis na Amazon, tanto em versão física quanto eletrônica, pela bagatela de quase US$100,00.

Brincadeiras à parte, é um livro leve, divertido e inteligente.

O Que É Análise Baeysiana?

Você já leu Sherlock Holmes? Ele tinha um método peculiar para analisar cada mistério: primeiro, examinava as evidências e montava uma lista de hipóteses. Depois testava cada uma delas, tentando validá-la ou refutá-la. Ele sempre dizia que “eliminadas as hipóteses inviáveis, a que restar deve ser a resposta correta, por mais impossível que pareça” e com isso ele sempre chegava a uma resposta. Nem sempre ele acertava, claro, e nestes casos ele voltava ao começo: reexaminava as pistas, montava outras hipóteses e recomeçava.

Esse processo, de listar as possibilidades, e depois calcular as probabilidades de cada possibilidade é justamente a essência do método. Há toda uma matemática envolvida para descrever esse de ciclo, mas tudo que você precisa para entender a matemática é – segundo o autor – saber derivada e integral. Ele parece ser muito bom em te levar por esse caminho, da intuição até a formalização, sem traumas e com exemplos práticos.

Expressões Regulares

Ah, as exaltadamente malditas RegEx! Uma ferramenta tão poderosa quanto xingada! Bom, a Packt abriu gratuitamente, no Free Learning Forever o livro Mastering Python Regular Expressions e eu peguei. Ainda estou nos 50%, mas posso garantir: mudou minha vida. O autor explica a idéia de expressões regulares muito bem no primeiro capítulo. Já li bastante coisa sobre RegEx pela web, mas nunca alguém foi tão claro e conciso. O autor entende muito bem as confusões de quem não conhece nada do assunto e sabe mesmo como evitar as armadilhas de explicação. A clareza cai um pouco no segundo capítulo, mas só primeiro já valeu.

Finalmente um livro que explica bem RegEx!
Finalmente um livro que explica bem RegEx!

Building a Scalable DV

E finalmente consegui separar um tempo para lê-lo com calma. Esse livro é o bicho, o cara, o alfa e o ômega, é tudo – e muito mais! Se você não sabe do que eu estou falando, é bom aprender. O livro é este:

Building Scalable Data Warehouse Vault - O Livro!
Building Scalable Data Warehouse Vault – O Livro!

E pode ser comprado aqui. Ele ensina como montar um EDW usando Data Vault, inteirinho, com tudo dentro – até a pia da cozinha. Não vou colocar os detalhes: baixe uma amostra e leia o sumário para ver tudo que ele inclui.

Se todos os livros do Linstedt até agora eram uma porcaria, esse aqui o redimiu.

Para montar um EDW de gente grande você precisa apenas de dois livros: este aqui e o DW Toolkit, do Kimball. E só.

Mastering Docker

E finalmente o livro que me fez desistir do Vagrant:

Aprendendo Docker. Lentamente. Mais devagar... isso...
Aprendendo Docker. Lentamente. Mais devagar… isso…

Eu ouço falar de Docker já há um bom tempo, mas nunca dei muita trela. Preconceituosamente, achava que era só mais um concorrente no espaço de virtualização. Num destes finais de semana, fuçando no site da Packt, recebi uma pesquisa para responder. No final ganhei um cupom de 75% de desconto, que eu usei para comprar esse livro por 1/4 do preço.

Bom, eu não podia estar mais enganado sobre o Docker.

Sim, ele monta ambientes por meio da virtualização de alguns recursos, mas a similaridade com máquinas virtuais acaba aí. A tecnologia do Docker, chamada de Linux Containers, permite montar ambientes de todo tipo, por uma fração do overhead de virtualização. Ainda que esta possua certas capacidades que a tornam mais apta a necessidades específicas, quase tudo pode ser muito bem resolvido com um conteiner, e o Docker é justamente o engine que movimenta isso.

E o livro? Ele é bom, falando de maneira geral. Ele foi escrito por gente que entende do assunto, não há dúvidas, mas são acadêmicos. Isso tem reflexos no estilo do livro, que é um pouco enrolão. Normalmente esperamos por alguma explicação centrada em exemplos e mais explícita, mais digerida, o que não acontece nesta obra. Pode ser só birra minha, ou pura e simples limitação intelectual (mais provável), mas as coisas importantes me pareceram estar disfarçadas sob uma grossa camada de fraseados elaborados e contorcidos como um arabesco.

No final das contas até dá para pegar as coisas importantes, como por exemplo a distinção entre contêiner e imagem (um é a execução do outro, que é o filesystem do um.) Mas se você espera uma coisa como o livro de RegEx do tópico anterior, recalibre sua expectativa.

Por uma daquelas imensas coincidências, ontem eu descobri um blog mantido por um cara que eu acho que já foi meu aluno, o Alexssandro Oliveira, que dá um excelente exemplo de como subir um servidor Pentaho com Docker. Vale a pena ler: Configurando um ambiente Dev Pentaho com Docker. Eu pretendia montar um exemplo, mas o dele está tão bem-acabado que é até besteira querer fazer melhor. E não é a única coisa boa lá, não! O blog inteiro dele é muito interessante, tanto que eu me inscrevi nele ontem mesmo.

Conclusão

Quem, em 2016, ainda compra ou empresta livros? Em uma era com tanta documentação on-line e gratuita, quem em sã consciência gastaria dinheiro e tempo com livros?

Eu. :-) E não pretendo parar tão cedo! Felizmente eu ganhei o dom de gostar de ler, o que ajuda muito a me mantar atualizado e a aprender sempre mais. Mas se você não faz o gênero CDF-óculos-fundo-de-garrafa (que eu fiz por uns 25 anos), devorador de livros, tente ler ao menos uns dois ou três por ano. Livros vão sempre mais fundo que posts, e em geral são mais fáceis de acompanhar que uma Knowledge Base.

Hoje eu mostrei alguns que vão me ocupar pelo próximo mês.

E você, o que tem lido de bom?

Até a próxima! ;-)

 

Data Vault – Satélites?

No post Data Vault – Como Usar  falei um pouco sobre a motivação, conceitos e arquitetura envolvida em um projeto de DW baseado em Data Vault. Um dos meus leitores colocou algumas perguntas muito interessantes, tão interessantes que eu decidi respondê-las em um post exclusivo. Além de ser um meio mais cômodo que um formulário de comentários, é uma forma de agradecer pela participação e mostrar o quanto eu apreciei. ;-) (Sim, eu sou fã dos meus leitores.)

Perguntas, Perguntas, Perguntas

Eis as perguntas colocadas no comentário:

1) Nos satélites, você cita um campo “Load End Date/Timestamp: data e hora do fim da validade daquele registro (default é NULO);”. Neste ponto eu fiquei em dúvida. O ETL para estes satélites poderão realizar operação de update ou não? Ou este campo seria apenas para os casos de atributos que já tiveram uma “vigência fechada” nos OLTP (estou fazendo analogia ao SCD tipo II)?

2) Eu e um colega discutimos se o DV seriam bancos de dados para cada sistema transacional ou todo o DV corporativo estaria em um único banco de dados. Você sugere o DV deveria estar em bancos diferentes? Ou tudo junto? No meu caso, estou falando de SAS e, consequentemente, datasets são tabelas e diretórios são bancos de dados. Então, na falta de um banco relacional como DV, eu inicialmente colocaria todo o DV num “diretório dvault”.

3) Um BD relacional daria conta de manter um satélite gigantesco (algo como muitos atributos/colunas muitas transações/registros por dia)?

Vou responder uma por seção. Vamos lá.

LEDTS vs. SCD2

O ETL para estes satélites poderão realizar operação de update ou não?

Não apenas podem, como devem. Satélites guardam histórico e possuem exatamente o mesmo comportamento de uma dimensão de variação lenta do tipo 2. Ele acertou na mosca!

Hubs e links são tabelas que guardam os conceitos de negócio da organização, e as relações entre esses conceitos. Se algum dia um determinado hub ou relacionamento entre hubs existiu, o Data Vault captura e arquiva essa informação. Satélites, por outro lado, dão o contexto desses elementos.

O Cofre: Coleção ou Caverna?

A segunda pergunta é mais complexa:

Você sugere o DV deveria estar em bancos diferentes? Ou tudo junto?

Bom, por um simples questão de integração, deveria estar tudo junto.

Buraco Negro

Até que ponto pode crescer um satélite?

Um BD relacional daria conta de manter um satélite gigantesco (algo como muitos atributos/colunas muitas transações/registros por dia)?

Bom, o propósito central de um DV é acumular “todo os dados, para todo o sempre”. Logo, precisamos que a estrutura na qual os dados estão armazenados dê conta disso. Se um relacional não consegue, então precisamos recorrer a algo mais elástico. Inmon chamava essa camada de Near Line Storage, que é um armazenamento de alto volume, mas em uma mídia mais econômica. Em troca pelo preço menor por byte e durabilidade maior, a velocidade de acesso seria menor. No caso original, NLS seriam fitas magnéticas.

Conclusão

A conclusão, desta vez, é minha: do comentário e das perguntas eu posso ver que estou deixando algumas lacunas no assunto de Data Vault. Vou levar essa visão em consideração nos próximos posts sobre o assunto.

Até lá! ;-)

Projeto de Sucesso

Eu já escrevi um pouco sobre como projetos de BI “acontecem”. Em Cruel Sucesso eu divaguei sobre a eterna sensação de fracasso que algubs projetos de BI experimentam, mesmo que ele esteja indo de vento em popa. No Todos os Caminhos Levam a um DW eu me diverti escrevendo uma história maluca sobre um projeto de BI fictício, que nasce como uma planilha Excel e cresce como mandiopã, até explodir e voltar ao começo. Mudando o foco para requisitos, eu discorri sobre Ágil e BI (De Agilidade e BI), para descaradamente anunciar meu curso de requisitos de BI para gestão ágil.

Quase sempre esses posts vem do nada, motivados por alguma situação pela qual passei. Eu estava com o novo fascículo da série Soluções Clássica quase pronto (Credit Scoring), mas aconteceu de novo: me meti num debate sobre o que era um “bom” projeto de BI.

Bom, eu tenho uma idéia do que deve ser um. Vou dividir com vocês a opinião que eu coloquei no debate, mas já sabem, né?


Disclaimer: o que você vai ler é a minha opinião, logo você não é obrigado a gostar dela ou concordar. Terei prazer em ouvir críticas ou outras opiniões, mas no final – como diz o Homer Simpson – a opinião é minha e faço com ela o que quiser, certo?


Sucesso Não Existe

Primeiro, não existe mundo perfeito. Não adianta sonharmos com a próxima grande ferramenta para resolver nossos problemas, porque o melhor que pode acontecer é resolvermos os problemas atuais e caírmos em novos. O que faz a diferença, na minha humilde opinião, é evitarmos empacar. Se empacamos, o projeto começa a fazer água, e quanto mais tempo demoramos para resolver o problema da vez, menos relevante o projeto de BI se torna, até que um dia todo mundo está se virando sozinho e o projeto é mantido vivo apenas com auxílio de aparelhos.

O que torna um projeto bom, de sucesso, então, é o fato de ele estar sempre em movimento, resolvendo cada problema como um corredor salta obstáculos: pula, corre, pula, corre, pula, corre… Eventualmente, um dia a coisa toda entra em velocidade de cruzeiro, a quantidade de erros cai substancialmente e a empresa desenvolve uma cultura de BI. Esse é o projeto de sucesso: falível, sempre precisando de alguma melhoria, mas que entrega resultados e é acreditado pela organização, sustentado pela cultura de conhecimento da empresa.


Um projeto de BI de sucesso, IMHO, é aquele que resolve um problema atrás do outro, sempre entregando um pouco mais de resultados a cada etapa, capaz de suplanta as próprias limitações e ir ao encontro das expectativas do cliente.


O Caminho para o Sucesso

Ora, dirão vocês, bolas. A definição acima é uma rematada platitude: não diz nada de realmente útil ou prático. Concordo. Vamos escrevê-la ao contrário para ver se fica mais claro:


Fracassa o projeto de BI que persistir em trilhar caminhos sem saída.


Consegui me fazer entender? Quando optamos por este ou aquele caminho, corremos o risco de enveredar por uma rua sem saída. Projetos – de qualquer tipo – que reiteradamente optam por entrar em becos sem saída acabam morrendo porque, cedo ou tarde, a organização se cansa de tanto vai-e-vem! Quer seguir no caminho para o sucesso? Esforce-se por evitar decisões ruins!

Decisões, Decisões, Decisões

Devo ter engolido o grilo falante quando era criança, pois eu sempre escuto uma voz fininha, tirando onda com a minha cara. Desta vez ela disse “Intelijumento! Se soubéssemos que decisão vai dar errado, não a tomaríamos! Dã!”

Óbvio, claro, não se questiona isso. É a própria essência do processo decisório, é a meta personificada de se fazer uma escolha: fazer a escolha certa!

Como saber se uma opção, e não a outra, é a correta? Ah, de muitas formas. Em alguns casos estamos passando pelo mesmo problema uma segunda vez. Se da primeira fizemos a escolha certa, tendemos a repeti-la, e vice-versa: deu errado antes? Vamos tentar outra coisa. Em outros casos não conhecemos, ainda, as consequências de cada caminho, mas podemos avaliá-las com o que estivar à mão – opiniões, análises estatísticas, jogar cara-ou-coroa – e escolher a que parece melhor.


Em último caso, recorra a um taxista: eles sempre sabem o que os outros deviam fazer. ;-)


O Que Funciona?

E aqui chegamos no ponto em que eu queria: o que funciona em um projeto de BI? Como montar um projeto que vai empacar menos?

Armazéns de Dados

Um bom DW é fundamental para qualquer projeto de BI de sucesso. Você pode se virar com dumps, ODFs, Data Lakes, mas esses caminhos são becos sem saída: cedo ou tarde o peso da falta de integração dos dados (dumps e Data Lakes) e das manutenções de modelo e ETL (ODFs e EDW Dimensional) vão afundar seu projeto – mesmo que todo o restante funcione.

Logo, lição número um: monte um bom projeto de DW, capaz de incorporar novas fontes num estalar de dedos e de produzir novas apresentações de dados em dois palitos. Quem acompanha meu blog já sabe o que isso significa: Data Vault.

Equipes

Ferramentas são importantes, mas não são nem metade da solução. Problemas são resolvidos por pessoas com conhecimento e competência para aplicar ferramentas, não pelas ferramentas. E outra: muito ajuda quem pouco atrapalha – gerente bom é gerente quietinho, que serve a equipe, ajudando a remover obstáculos.

Processos

Há dois grupos de processos dentro de um projeto de BI, especificamente:

  • Processos de Desenvolvimento;
  • Processos de Atendimento.

O primeiro é batata: é o processo pelo qual a equipe (parte dela, na verdade) mencionada acima produz os resultados requisitados pelo cliente.

O segundo processo é virtualmente ignorado pela comunidade de praticantes de BI: é o processo pelo qual a outra parte da equipe apóia o cliente. Sim! É o time de “vendedores”, instrutores e tutores, que trabalham com o cliente para entender o que ele precisa e transformar isso em requisitos, que serão tratados pelos desenvolvedores; que ajudam cada novo usuário a aprender a usar as ferramentas e os dados do projeto. O tutor é uma figura inexistente na literatura, mas pode ser visto como um instrutor particular, que vai resolver o problema do usuário uma primeira vez, e ajudar o usuário a repetir esses passos. Ele é diferente do instrutor, que ensina a usar o que está pronto. O tutor cria coisas novas – novas práticas, novos usos dos dados, novos requisitos.

Processo de Desenvolvimento

Não tem segredo: waterfall [bigbang][bigbang_bitly] não funciona, ponto final. A única forma de gestão de projetos que dá certo é Ágil, e neste ponto Scrum é o meu preferido.

Processo de Atendimento

De novo, não tem segredo: um grupo de vendedores (ou evangelistas/analistas de requisitos) e apoiadores (instrutores e tutores) expostos exaustivamente, com uma mensagem clara: Precisa de dados? Me ligue!. Eles interagem com o processo de desenvolvimento alimentando novas histórias no backlog (para os vendedores), com o cliente por meio de chamadas de suporte (tutores/suporte técnico) e com a empresa por meio da capacitação corporativa.

Soluções

Todo projeto de BI usa quatro tipos de soluções:

  • Apresentações;
  • Relatórios;
  • OLAP;
  • Data Mining.

As três primeiras são baseadas em ferramentas, e portanto são resolvidas pela incorporação de profissionais das respectivas ferramentas ao time. Já a última é tratada como uma conjunto de projetos-filhos e raramente é tratada in house. O normal, para soluções que envolvem Data Mining, é contratar uma empresa especializada no assunto desejado.


E os painéis? Painel não é solução de BI, é ferramenta de (tcham-tcham-tcham-tcham-tcham!) apresentação de dados (e não, não é ferramenta de análise! Quem analisa é OLAP e Data Mining.) Logo, você pode ler o primeiro item da lista acima como “dashboards“. Porém, há muitas formas de se apresentar dados e eu evitaria fechar esse escopo prematuramente, jogando tudo na vala comum “painel”.


Um bom projeto de BI precisa incorporar essas categorias, sem exceções. Não precisa oferecer tudo ao mesmo tempo, desde o dia 1, mas deve garantir que o roadmap vai contemplá-las ao longo do caminho. Como conseguir isso? Tente incluir no seu time um generalista de BI, aquele cara que entende um pouco de tudo, e sabe como os assuntos se interconectam, como amadurecem ao longo do ciclo de vida do projeto.

Se você não puder contar com um membro permanente, aceite um membro flutuante, como um coacher, por exemplo. Se não existir na empresa, procure um consultor externo. Raramente um profissional desse cresce durante um projeto de BI, e você só vai achar um na sua empresa, à sua disposição, por pura sorte.

Conclusão

Então vamos lá: um bom projeto de BI é composto por um time multi-disciplinar (especialistas em ferramentas de ETL, apresentação e exploração de dados), com uma equipe voltada para o atendimento do cliente (esqueça a idéia de ter “self-service 100%”) e outra voltada para uma linha de produção de soluções. Na entrada dessa linha está um DW baseado em Data Vault, no meio as áreas de dados para consumo e na ponta as ferramentas de uso dos dados (apresentação, relatórios e OLAP.) Pipocando aqui e ali aparecem os sub-projetos de Data Mining, tocados normalmente por consultorias externas e nascendo de necessidades pontuais. Essa visão geral pode ser melhor organizada por um generalista.

Nenhuma destas idéias é minha, e isso em parte me dá confiança nelas: Bill Inmon chama esse modelo de CIF, o inglês para Fábrica de Informações Corporativas.

Diagrama da Fábrica Corporativa de Informações.
Diagrama da Fábrica Corporativa de Informações.

Outro nome para essa abordagem é BICCBusiness Intelligence Competence Center. Veja este artigo para uma discussão mais detalhada do conceito.

Não é um BICC, mas dá uma idéia de como funciona a tal "linha de produção".
Não é um BICC, mas dá uma idéia de como funciona a tal “linha de produção”.

O restante da minha confiança nesse modelo nasce de eu ter experimentado tudo isso: Data Vault, Scrum, Data Mining, OLAP, Relatórios, equipes proficientes etc. etc. etc. Eu vi projetos de BI fracassarem ao descuidar desses fundamentos, como também vi projetos de BI que estão vivos até hoje, alguns zumbis, outros mancando, mas em operação. Se os que dão certo trazem pistas do que pode ser o mais importante, ou o que dá resultados, os que se arrastam, semi-mortos, são os mais valiosos para entender como e porque as coisas dão errado.

É isso, até a próxima. ;-)

Data Vault – Como Usar

Um dos leitores do blog deixou este comentário em 18/5/16:


Fábio, gostaria de mais instruções sobre o data vault, como aplicar, onde aplicar e como é sua modelagem e arquitetura.


Prometi a ele que o próximo post responderia essa questão. Então aqui está: Data Vault, uma visão geral sobre onde aplicar, como modelar e em que arquitetura colocá-lo.

Do Começo, Por Favor

Data Vault é uma metodologia de desenvolvimento de Armazém de Dados Corporativo (do Inglês EDW), que inclui modelagem e processo de ETL. A versão 1.0 parava aí, já a 2.0 vai adiante, até a camada de apresentação dos dados.

Essa técnica foi inventada e desenvolvida por Daniel Linstedt para um projeto na mítica Lockheed Martin, que faz (fazia?) o mítico Blackbird SR-71, o avião dos X-Men. Baixe a amostra do Building a Scalable Data Warehouse with Data Vault 2.0 e leia o prefácio (do mítico Bill Inmon – isso aqui tá um templo grego de tanto mito!!) para ver essa história.

Perdão, mas eu precisava colocar isso aqui.
Perdão, mas eu precisava colocar isso aqui.

Aplicando Data Vault podemos desenvolver um Armazém de Dados com baixo custo, alta produtividade, baixo retrabalho, com processo de ETL de alta performance e altíssimo MTBF.

Volte Mais!

E porque precisamos de um Armazém de Dados mesmo? Bom, não é o assunto deste post, mas aqui vai, resumidamente:


No fundo, não “precisamos” de DW. Precisamos é armazenar a evolução dos parâmetros da empresa ao longo do tempo. Podemos fazer isso de várias formas: um estagiário anotando valores em um papel de pão, ou uma planilha Excel, ou dumps de bases em um cluster Hadoop. Ocorre que, por acaso, DW é a tecnologia adequada para isso.


Leia meu post Um Ponto Fita o Mundo para ver o argumento inteiro.

Vamos continuar?

Por Quê Adotar DV?

Todo EDW cumpre duas funções básicas:

  • Puxa dados dos vários sistemas da empresa para um repositório central;
  • Integra os dados dos diversos sistemas em uma visão abrangente.

Um EDW precisa puxar os dados de todos os sistemas porque qualquer se não olharmos em todos os dados da empresa nunca teremos a certeza de termos investigado tudo que há para ser examinado. É como perguntar que livro sumiu da biblioteca: só olhando todos vamos saber qual não está lá. Se o gerente financeiro pergunta “quais são todos os gastos da empresa”, precisamos olhar tudo!

Pense: se sua empresa tiver dois sistemas em MySQL, um em SQL Server, um em Postgres e outro em Oracle, como escrever um SQL que percorra todas essas bases? Não dá, não é? Os dados precisam estar em um repositório centralizado por simples limitação das atuais tecnologias de banco de dados: como em geral usamos SQL para fazer essas pesquisas, e um SELECT não consegue consultar – ao menos não de maneira fácil – dois ou três ou mais bancos de tecnologias diferentes ao mesmo tempo.

Os dados precisam estar integrados, o que significa bater os CPFs 012345678-00 com 1234567800. Quando puxamos um relatório do cliente 012.345.678-00 precisamos que ele seja identificado em todos os sistemas, não importando se na origem ele aparece como 1234567800, 012345678-00, 012.345.678-00 ou de qualquer outra forma. Dados não-integrados fornecem respostas erradas. Sem integrar os dados, seu DW não vale o HD no qual está gravado.

Há várias técnicas para construir um DW atendendo essas duas obrigações:

  • Copiar tudo da origem, mantendo os mesmos modelos, e integrar na hora de fazer a consulta. Frágil, trabalhoso e pesado (consome muita máquina;)
  • Copiar tudo da origem, gravando em um novo modelo na Terceira Forma Normal. Mais robusto e de melhor performance que o anterior, mas de evolução e manutenção tão difícil que beira o insano;
  • Copiar a origem em um novo modelo, como no item anterior, mas em um Modelo Dimensional. Não tão robusto, mas de boa performance, com evolução e manutenção práticas e simples no começo, mas tendendo à impossibilidade de manutenção e evolução com o tempo.

E finalmente, o Data Vault, que não sofre de nenhum destes problemas e tem todas as vantagens. Resumindo em figuras:

Os impactos das mudanças na arquitetura tradicional.
Os impactos das mudanças na arquitetura tradicional.
Os impactos das mudanças, agora no arquitetura com DV.
Os impactos das mudanças, agora no arquitetura com DV.

Só para ficar claro: por “nenhum impacto aqui”, no último quadro da figura acima, eu quero dizer “nenhum impacto de manutenção”, já que, obviamente, pode ser preciso criar algo novo. Não haverá impacto no que existe, não será necessário mudar nada.


Adotar Data Vault como metodologia para desenvolvimento de um DW vai evitar os problemas que costuma comprometer os DWs da 3FN e Dimensionais.


Hoje vamos deixar só com essa afirmação, porque este é um post de visão geral, mas você pode seguir os links apresentados até agora para ler o (extenso) argumento explicando porque é assim.

Como Aplicar?

De fato, não há segredo na aplicação de Data Vault. A técnica meio que se resume em:

  • Quebrar o trabalho em “histórias”: quero medir isso, quero analisar aquilo;
  • Daí, para cada uma:
    • Identificar as tabelas na origem que respondem essas perguntas
    • Expandir o modelo de dados do DV com hubs, links e satélites;
    • Gerar automaticamente ETL de carga do DV;
    • Desenhar o ETL para a área de apresentação.

Existem padrões e técnicas para cada atividade, e a metodologia casa-se como uma luva à gestão ágil. Meu método preferido é o Scrum, e chega a ser surpreendente ver como DV adequa-se tão perfeitamente ao Scrum.


Veja meu post De Agilidade e BI para alguns comentários sobre o levantamento de requisitos para projetos ágeis.


Como É a Arquitetura?

Você já deve ter intuido a forma geral da arquitetura em uma das figuras anteriores. Reorganizando e renomeando as partes daquela figura temos uma visão mais clara:

Arquitetura Data Vault.
Arquitetura Data Vault.

Ou seja:

  1. Um ETL (gerado automaticamente) traz os dados de cada origem;
  2. Um banco de dados (preferencialmente relacional, mas um Hadoop does too) recebe e, graças ao modelo de dados do DV, integra tudo “na entrada”;
  3. A partir deste banco um segundo processo de ETL popula as soluções;
  4. Essas soluções podem ser de todo tipo: análises multidimensionais (OLAP), Data Mining (CRM etc.), painéis, relatórios etc. etc. etc.

Cada uma destas soluções após o segundo ETL têm suas arquiteturas particulares. No fundo a arquitetura de um DV são dois ETLs com um banco com modelo de dados DV no meio, mais nada. A partir daí, tudo fica igual à qualquer outro projeto de BI.

Modelagem

A modelagem de um Data Vault é relativamente simples, e você pode ler um pouco mais sobre ela neste post. Grosso modo, porém, resume-se ao seguinte:

  • Identificar chaves de negócio e criar hubs;
  • Encontrar relacionamentos entre chaves de negócio e criar links;
  • Escolher os atributos de hubs e links e criar os satélites.

Hubs

Hubs são tabelas que guardam conceitos, ou chaves, de negócios. Uma chave de negócio é um conceito importante para a empresa: cliente, produto, pedido, posição no call center, empregado, etc.

Tabelas hub possuem as seguintes colunas, nem uma a mais nem a menos:

  • Business Key: chave primária, um inteiro sequencial;
  • Load Date/Timestamp: data e hora da inserção do registro;
  • Record Source: fonte da chave de negócios;
  • Source business key: chave de negócio no sistema de origem.
Uma tabela hub.
Uma tabela hub.

Não há grandes segredos aqui: tabelas hubs acumulam as chaves de negócio, que são a espinha dorsal do modelo. A chave primária é a BK. A cada carga insere-se apenas as novas chaves de negócio dos sistemas de origem. Se a chave já existe, nada é feito. Se a mesma chave existe em vários sistemas, apenas a primeira que chegar é inserida.

Links tão tabelas que guardam o relacionamento entre dois hubs. Uma tabela link que relaciona os hubs 1, 2, … , n possuem as seguintes colunas, nem mais, nem menos:

  • Link Key: chave primária, um inteiro sequencial;
  • Load Date/Timestamp: data e hora da inserção do registro;
  • Record Source: fonte do relacionamento;
  • BK1: business key do hub 1;
  • BK2: business key do hub 2;
  • BKn: business key do hub n.
Uma tabela link.
Uma tabela link.

Ela também não sofrem atualização: novos relacionamentos são inseridos, antigos são ignorados. Se um relacionamento já registrado não é mais detectado, ele não é apagado.

Satélites

Satélites são como tabelas de dimensão: guardam os contextos de hubs e links. Uma tabelas satélite de um hub/link que guarda os atributos A1, A2, … , An de um hub/link X possui as seguintes colunas, nem mais, nem menos:

  • Business Key/Link key: chave primária do hub/link
  • Load Date/Timestamp: data e hora da inserção do registro;
  • Load End Date/Timestamp: data e hora do fim da validade daquele registro (default é NULO);
  • Record Source: fonte dos atributos;
  • A1: atributo 1;
  • A2: atributo 2;
  • An: atributo n.
Uma tabela satélite.
Uma tabela satélite.

Modelo Completo

A coleção dessas tabelas e seus relacionamentos dão o modelo completo:

As tabelas combinadas no modelo.
As tabelas combinadas no modelo.

A etapa seguinte é construir o ETL para dentro do DV, e depois do DV para a camada de apresentação/consumo de dados.

ETL

Um DV possui duas vantagens “matadoras”: integração dos dados no modelo, ao invés de no ETL como é o mais comum, e um ETL padronizado. Graças à essa padronização o ETL de um DV inteiro pode ser gerado automaticamente: a partir de alguns gabaritos de SQL podemos construir o processo que lê e grava todos os hubs, links e satélites.

Eu sempre uso o Pentaho Data Integration (PDI) para processos de ETL, e meu curso de DV entrega ao aluno um gabarito de projeto completo – é só tirar da caixa e usar. A última versão dele traz até os SQLs para criar as tabelas no Data Vault.

Isso para o primeiro ETL, para dentro do DV. O segundo ETL, saindo do DV para a camada de apresentação, é mais particular, e não há como automatizar sua geração. Por outro lado, como todos os pontos de partida não são mais os sistemas de origem mas sim o DV, a “forma” geral desse segundo processo é mais uniforme, e alguns padrões acabam por facilitar seu desenvolvimento.

Por exemplo, dimensões são quase sempre construídas a partir de um hub e seus satélites, e tabelas fatos originam-se de links. Construídos os SQLs que lêem isso no DV (e nisso eles seguem um padrão de JOINs bem cadenciado), o passo seguinte é fazer trocas de chaves naturais por delegadas e, em caso de necessidade, limpar os dados.

Conclusão

Adoro quando um leitor pede algo, pois escolher o tema do próximo post, para mim, é como escolher roupa para sair: muito, muito difícil – e se não gostarem? e se ficar ruim? e se eu falar besteira por saber pouco? E se?…

Vimos que um Data Vault é uma metodologia que habilita a realização da visão de Bill Inmon, a Corporate Information Factory. A [CIF][cif_bitly] (até o advento do DV, outro mito) é como uma linha de produção, que ingere todos os dados da empresa e “fabrica” produtos de dados conforme as necessidades vão surgindo.

Data Vault é uma metodologia composta por uma modelagem, um processo de geração automática de ETL e outros elementos (como padrões e nomenclaturas.) O EDW se completa com um segundo processo de extração, que leva os dados para as áreas de apresentação, em formato dimensional ou não. Tudo em um processo de desenvolvimento que nasceu para ser tocado com gestão ágil (Scrum, na minha preferência), boa parte automatizada e com baixo ou nenhum retrabalho.


Não deixe de ver o post As Vantagens do Data Vault para mais sobre como um DV pode ajudar seu projeto de EDW.


É claro que nada é 100% a prova de falhas, defeitos ou problemas e eu mesmo já enfrentei minha cota de surpresas, dificuldades e maluquices nesse caminho que venho trilhando há alguns anos. Mesmo assim, hoje em dia, um Data Vault é a coisa que mais se aproxima de um método perfeito.

Fora essa babação no final, acredito que era isso. ;-)

As Vantagens do Data Vault

Semana passada, 6/5/16, eu assisti uma palestra sobre uma empresa chamada Attunity, e suas ferramentas para Business Intelligence. Vendo as promessas do representante brasileiro eu me dei conta de que já escrevi bastante sobre DV, mas nunca escrevi especificamente sobre as vantagens trazidas pela adotação de Data Vault. Vamos corrigir isso hoje, partindo desta apresentação.


Você pode pular direto para a lista de vantagens clicando aqui.


Uma Nova Categoria

Estamos em 2016 e já lá se vão cerca de 40-50 anos desde que Bill Inmon começou o debate sobre Armazéns de Dados, e 24 anos desde seu livro Building the Data Warehouse. Muita água passou embaixo da ponte e todas suas idéias estão sedimentadas, firmes, sobre as quais se assenta a moderna indústria de DW. Um destes conceitos é a Corporate Information Factory, que agrupa as fontes de dados e seus consumidores como uma linha de produção.

Diagrama da Fábrica Corporativa de Informações.
Diagrama da Fábrica Corporativa de Informações.

Tal qual a revolução industrial fez com a manufatura, graus de automação sucessivamente maiores estão acelerando e simplificando o desenvolvimento, manutenção e gerenciamento de Data Warehouses. Instrumental para essa revolução foram tecnologias aparentemente irrelevantes, como modelos de dados e metodologias de desenvolvimento.

Metodologias como Scrum, Continuous Integrations e DevOps agem para diminuir a intervenção e variabilidade da ação humana, enquanto que outras, como Modelagem Dimensional e Data Vault, domam a confusão dos sistemas OLTP e permitem a criação de algoritmos. E é justamente essa criação de algoritmos que permite automatizar o processo de desenho, desenvolvimento e manutenção de DWs.

Uma nova categoria de ferramentas brotou desse fértil ambiente: ferramentas de automação de gestão de DW. Ainda não vi esse ramo ser tratado por um acrônimo, nem mesmo ter um nome mais comum, mas acho que, em Inglês, seria algo Data Warehouse Management Solutions, ou DWMS. Já sabem: se virem por aí, apareceu no GeekBI primeiro. ;-)

Continuando, essa categoria já tem alguns nomes internacionais:

Fazia tempo que eu não visitava o BI Ready, empresa de Ian Nicholson com quem já troquei umas idéias no LinkedIn. Surpresa! Ela foi adquirida pela Attunity e agora são um nome só. Não é à toa que, na apresentação, a Attunity declarou pertencer a essa turma – ela comprou “metade” das empresas dessa área!

Esse é o Ian Nicholson, fundador da BI Ready, fazendo a mesma cara que eu faria se tirasse essa foto.
Esse é o Ian Nicholson, fundador da BI Ready, fazendo a mesma cara que eu faria se tirasse essa foto.

Processos e Problemas

Um projeto de DW que hoje é chamado de “tradicional” (i.e., feito com metodologias de mais de 15 anos atrás) envolvia as seguintes etapas:

  1. Levantar os requisitos;
  2. Estudar os dados de origem;
  3. Desenhar o modelo dimensional;
  4. Desenhar o processo de ETL;
  5. Colocar em produção;
  6. Dar manutenção: propagar as mudanças dos sistemas de origem e adequar às novas necessidades do cliente.

Esse projeto em geral era tocado dentro de uma moldura PMI (a.k.a. Waterfall). Era um método tão certeiro e determinístico que até hoje todo mundo sabe que, feito assim, sempre falha.

Os problemas de um DW 'clássico'.
Os problemas de um DW ‘clássico’.

DW feito por cópia dos bancos de origem é a pior escolha possível, a menos que seja para uma padaria, uma farmácia, uma banca de jornais etc. ;-) Veja que não estou falando de palco (stage), mas de montar o DW como uma coleção de réplicas. Um modelo dimensional é o mínimo necessário para sobreviver aos problemas que serão apresentados ao final desta seção.


Com o advento do Manifesto Ágil e Data Vault, um projeto de DW moderno é tocado assim:

  1. Levantar os requisitos da próxima entrega (30 dias;)
  2. Estudar os dados de origem até encontrar o estritamente necessário para próxima entrega;
  3. Desenhar o DV;
  4. Gerar automaticamente o processo de ETL;
  5. Derivar dados para apresentação;
  6. Colocar em produção e reiniciar o ciclo.

A manutenção é incorporada nas sprints.

Veja que, grosso modo, o processo em si não mudou muito: de projeto waterfall passamos para Scrum, de modelo Dimensional no miolo do DW passamos para um Data Vault e o ETL principal é gerado automaticamente.

Os problemas que existem (existiam e vão continuar existindo) são:

  1. Integração: sem integrar e limpar 100% dos dados, todas as respostas são suspeitas. Ou você confiaria nos números sabendo que algo pode ter ficado de fora?
  2. Historiamento: não adianta montar um armazém que não guarda histórico. Fazer isso é cuidar de dados operacionais e jogar a água fora com o bebê – o maior valor dos dados está no histórico;
  3. Mudanças na origem: sistemas transacionais representam os processos que a empresa executa. Se a empresa muda, forçosamente os OLTPs precisam mudar, e o DW vai ter que ser adequado, sempre;
  4. Performance de ETL: a menos que a empresa esteja definhando, ela sempre vai crescer, sempre vai querer mais dados. O hardware para ETL sempre acaba ficando obsoleto, por um motivo ou outro, cedo ou tarde. O truque é extrair tudo que ele pode dar, e não desperdiçar nada;
  5. Velocidade de mudança: por fim, em cima de todos os problemas apresentados, temos o fato de que as coisas não estão ficando mais calmas, mais lentas, e sim mais rápidas, com mais demandas e mais complexidade.

Ferramentas…

As novas ferramentas de automação de DW se propõem a resolver esses problemas.

O Attunity propõe resolver um DW em dois passos:

  1. Usando o Attunity Replicate os dados são trazidos de diversas fontes de dados para um repositório centralizado;
  2. Daí, com o Attunity Compose, um DW é desenhado e carregado automaticamente.

Há um bom grau de magia negra envolvida (=coisas que acontecem sem entendermos claramente como), mas tudo faz um bom sentido. O Replicate se conecta aos bancos de dados de origem e fazem uma engenharia reversa total. Com essas informações ele vai ao banco de destino e recria o banco de origem, respeitando as diferenças de tecnologias. Por exemplo, ele pode replicar bancos MS SQL Server e Oracle para dentro de um único Postgres. Depois ele faz uma transferência inicial, em que replica as origem(ns) inteira(s) no(s) destino(s). A partir do final desta carga, o Attunity Replicate passa a ler o log de commits dos bancos de origem e replicar no destino, em tempo real.

Quem leu meu post Analítico ou Operacional? sabe que essa replicação não é um DW, e que fazer isso “não é BI”.

A Attunity também sabe, e dá o passo final em direção ao DW através do Compose. O que essa ferramenta faz é mais magia negra que a outra:

  1. Através de engenharia reversa e algoritmos especiais, o Compose “descobre” os relacionamentos entre as várias colunas de todas as tabelas das origens;
  2. Usando esse conhecimento, a ferramenta monta um DW – desenha um modelo de dados – automaticamente;
  3. Em seguida constrói (sempre automaticamente) o ETL para esse DW;
  4. Na última etapa ele monta uma área de apresentação de dados, seguindo indicações de que dados o cliente quer explorar.

A ferramenta ainda permite customizações e correções feitas pelo time de DW, de modo que qualquer interpretação incorreta pode ser ajustada.

Ou seja, ele automatizou 100% do processo moderno de desenvolvimento de DWs!!!! E digo mais: !!!!. Mas não pára por aí:

  • Esse DW guarda histórico;
  • A área de apresentação pode expor estrelas multidimensionais, com até mesmo SCDs tipo 2;
  • Ele detecta mudanças nas origens e ajusta o DW e o ETL;
  • Todas essas ferramentas são clusterizáveis, ou seja, podem ser escalonadas horizontalmente.

Isso são coisas que ouvi ou que perguntei durante a apresentação. Há coisas que eu não perguntei, mas presumo que também estejam no pacote, como tratamento de erros de ETL e monitoramentos diversos. Aliás, a parte de monitoramento é muito bacana, também – aprendi um negócio chamado “hot data, cold data”, sobre o qual vou fazer uns experimentos e, eventualmente, vou postar sobre.

… e Soluções

E como o Data Vault se encaixa nesse cenário? Simples: ele oferece tudo que as ferramentas oferecem, sem o custo monetário. Digo monetário explicitamente porque não existe almoço grátis, sempre precisamos pagar por algo. Se não é em dinheiro, vai ser em treinamento e capacitação, por exemplo, ou simplesmente mais trabalho.

DW 'moderno', re-organizado segundo DV.
DW ‘moderno’, re-organizado segundo DV.

Eis a lista de vantagens (ou problemas resolvidos) trazidos pela adoção de Data Vault no miolo do EDW:

  1. Velocidade de desenvolvimento: usar DV corta o tempo necessário para desenvolver e entregar em algumas ordens de grandeza. Por exemplo, coisas que levariam meses saem em dias;
    1. Modelo de dados: o diagrama de dados do Data Vault é construído através de regras simples, que capturam o negócio no modelo. Assim, uma vez que tenhamos a lista de esquemas, tabelas e colunas do sistema de origem, o ato de desenhar um DV é trivial e leva algumas horas, contra algumas semanas de outros formatos;
    2. Processo de ETL: usando o Pentaho Data Integration, o processo de ETL é gerado automaticamente, a partir do modelo elaborado anteriormente. Ainda é preciso juntar as partes (as diversas transformações) dentro de um job (pré-fabricado), mas isso é uma tarefa de minutos. O ETL inteiro sai em menos de um dia;
  2. Integração: o modelo de dados do Data Vault já arquiva os dados de maneira integrada. Ou seja, a integração ocorre via modelo, no momento em que os dados aterrisam no DV;
  3. Historiamento: 100% dos dados de um DV são historiados, automaticamente e por definição;
  4. Mudanças na origem: evidentemente não são tratadas automaticamente – um software pode fazer isso, não uma metodologia. Entretanto, esse impacto é mínimo:
    1. Qualquer mudança na origem não quebra o processo de ETL, ao contrário de DWs baseados em outros modelos;
    2. Mudanças na origem são resolvidas por um algoritmo simples, e qualquer manutenção leva praticamente o mesmo tempo de repetir o desenvolvimento (horas ao invés de semanas, portanto;)
    3. Nenhuma mudança na origem quebra a área de apresentação. A área de apresentação é reformada apenas em casos que afetem-na. Graças a esse fato, o impacto sobre a área de apresentação causada por mudanças nas origens é de mínimo a inexistente;
  5. Performance de ETL: várias vantagens ao usar um DV;
    1. Alta velocidade: por tratar apenas deltas (i.e., as diferenças) por meio de comparações simples, o processo é muito rápido;
    2. Paralelização: graças ao formato do ETL, todas as operações podem ser maciçamente paralelizadas, possibilitanto uso de hardware barato (COTS;)
    3. Resistente a erros: o ETL de um DV é auto-reinicializável por definição, e só é interrompido por falhas graves (hardware ou dados muito corrompidos;)
  6. Velocidade de mudança: é a mesma da velocidade de desenvolvimento – muito rápida.

Como vantagem extra, pelo fato de DV permitir atacar o problema por pedaços, ele se presta à:

  1. Modularização em sprints;
  2. Paralelização do desenvolvimento.

Por ser baseado em processos automatizados e algoritmos, a quantidade de erros é substancialmente menor, gerando projetos de qualidade maior, e mais padronizado.

Conclusão

Já há alguns anos a indústria de BI vem incorporando tecnologias que habilitam novas soluções de problemas complexos, como a construção, gerenciamento e manutenção de Armazéns de Dados. Essas tecnologias surgem como técnicas/metodologias e softwares.

Um software representante desta nova categoria é o Attunity, especificamente os módulos Replicate e Compose. O primeiro copia dados de diversas origens para um mesmo (ou vários) destino(s). O segundo modela um DW e cria o processo de ETL automaticamente a partir da réplica. Não sei com que qualidade, precisão e velovidade o Attunity entrega os resultados, mas a promessa é fantástica, para dizer o mínimo.

Esse produto é resultado de evoluções anteriores. Uma destas é a metodologia Data Vault, que oferece essa lista de vantagens:

  1. Alta velocidade de desenvolvimento: entrega em dia o que levava meses;
  2. Processo de ETL gerado automaticamente – maior velocidade, qualidade e padronização, com menos erros;
  3. Integração: dados são integrados na entrada;
  4. Historiamento: 100% dos dados de um DV são historiados;
  5. Mudanças: resiliente a mudanças na origem, processo de ETL não pára e impacto global (tanto ETL quanto usuários) é de mínimo a irrisório;
  6. ETL de alta performance, imune à erros, restartável e 100% paralelizável (é possível executar simultaneamente todas as etapas da carga do DV;)
  7. Adequado à processos de desenvolvimento ágil;
  8. Desenvolvimento do modelo (dada ferramenta adequada) e do ETL paralelizável.

Com um Data Vault podemos obter os mesmos resultados prometidos pelo Attunity, com menos automação, e com um custo diferente (menor?)

Clicando aqui você vê a lista dos meus posts marcados com Data Vault. Eis links para alguns do meus posts sobre o assunto:

E se você quiser ler sobre o assunto, o livro é este:

Livro sobre Data Vault.
Livro sobre Data Vault.

Só para não deixar vocês pendurados: eu ofereço os dois cursos, Requisitos Ágeis e Data Vault. Fazer essa propaganda dá impressão que eu montei um post para me auto-promover, mas juro que não é o caso deste aqui. Acredito no valor que esses cursos agregam e sentiria que estaria prejudicando você, meu leitor, ao evitar contar que eles existem. Quem me acompanha sabe que quando eu vou vender algo aqui, eu aviso no começo. ;-)


Até a próxima!

Balanced Scorecard & BI

A teoria do Balanced Scorecard por Norton e Kaplan, ou BSC para os íntimos, teve um impacto significativo no mundo do BI. Talvez, aliás, seja essa a raiz da mistura corrente entre OI e BI. Eu estava lá quando isso estava acontecendo, e vou dividir com vocês um pouco das minhas histórias sobre aqueles dias loucos.

O Mundo Até Então

Até meados do ano 2000, o top em BI de usuário era um DSS conhecido pelo acrônimo EIS, de Executive Information System. O EIS era composto por um DW e uma ferramenta OLAP, organizados de tal forma que um executivo poderia enxergar a empresa inteira a partir do topo, da maior agregação, e descer, seguindo o caminho que desejasse, até o nível mais baixo, da linha.

Assim, por definição, todo executivo ganhava o seu centro de controle ou painel de monitoração empresarial. O apelo do sistema é que ele dispensava o usuário de conhecer programação de qualquer tipo, pois um EIS era voltado para o nível gerencial, o nível tático-estrégico da organização.

Ao redor do EIS haviam uma gama de opções, entre produtos e soluções.

Por exemplo, o usuário poderia pedir um gerador de relatórios (um produto), para construir as listagens que bem entendesse, e quando desejasse. Ganhou alguma notoriedade, nesta época, o slogan “entregar o dado certo, no momento certo, para a pessoa certa”.

E haviam as soluções de BI (e ainda hão), que são pacotes fechados com um propósito definido. Soluções como CRM (gerenciamento da interação com cliente), Churn Detection (detecção e prevenção de atrito, como em call centers) ou Credit Scoring (concessão de crédito automatizado), eram desenvolvidas com uso de Data Mining sobre os dados das empresas.

E não esqueçamos dos DWs, projetos sempre complicados e difíceis, e quase sempre operando aos trancos e barrancos. A tecnologia de DWs passou por três momentos de inflexão: a criação de bancos de dados em dispositivos de acesso aleatório, por volta de 1960, foi o primeiro. DASDs habilitaram a existência de Bancos de Dados Relacionais, sem os quais não seria possível construir um serviço viável de exploração de dados – antes usavam-se fitas magnéticas, e qualquer coisa mais complexa que uma listagem agregada era um transtorno. Depois veio o Modelo Dimensional, no início dos anos 90, que resolveu a vida dos usuários ao montar os dados de uma forma inteligível, apta à exploração por analistas de negócios. Ainda faltava resolver o acúmulo de dados, que seguia também aos trancos e barrancos, atendido parcialmente por Modelagem Dimensional. O advento do Data Vault, já na década 2000, resolveu essa parte. Hoje em dia, DWs são problemas só para quem está desatualizado desde 2003.

Enquanto Isso, Na Sala de Monitoramento…

Quando alguém decide que quer gerenciar uma empresa quando crescer, esse alguém faz uma faculdade de Administração de Empresas. Dentro dessa especialidade existe um sem-número de técnicas e teorias voltadas a entender como uma empresa funciona e como tomar decisões para que ela cresca.

Dentro de Administração de Empresas existem subconjuntos de conhecimento que tratam do monitoramento de uma organização, bem como o planejamento estratégico dela. O termo “balanced scorecard” surgido durante a década de 90 refere-se, de maneira geral, a uma técnica de monitoramento de rendimento (performance) que usa indicadores financeiros e não-financeiros. Essa técnica acompanha a execução das atividades por grupos de profissionais e as consequências dessas atividades. Por algumas coincidências, e pelo movimento do mercado, criou-se a percepção que Robert Kaplan e David Norton criaram o conceito, o que não é verdade, pois a técnica já existia antes. Eles apenas desenvolveram um sistema de gerenciamento estratégico que usa a idéia de um balanced scorecard como pino central.

Balanced Scorecard

A premissa de um Balanced Scorecard é que uma empresa pode monitorar a execução de suas estratégias acompanhando certos indicadores-chaves. O Balanced Scorecard do Norton e Kaplan é uma formalização desse conceito em uma metodologia que, automatizada com auxílio da Informática, cristalizou-se em uma solução chamada Strategic Management System (SMS), ou Sistema de Gerenciamento Estratégico.

Essa metodologia está explicada no livro deles, o The Balanced Scorecard: Translating Strategy into Action. Em tese, qualquer um pode implementar o sistema em sua empresa, a partir deste livro. Eu consegui encontrar uma companhia, ESM, que vende tal sistema, aparentemente uma encarnação oficial das teorias da dupla. Eis alguns screenshots dele:

Exemplo de painel ESM.
Exemplo de painel ESM.

 

Exemplo de mapa estratégico ESM.
Exemplo de mapa estratégico ESM.

O grande truque, que deu fama e fortuna aos autores, é saber que parâmetros monitorar e entender como esses parâmetros surgem das métricas geradas pela empresa, como essas métricas se ligam aos objetivos estratégicos.

Exceto por toda essa teoria, um SMS é, nada mais, nada menos que uma coleção de painéis de instrumentos – os famigerados dashboards – com dados coletados dos sistemas da empresa.

So The Story Goes…

O livro deles saiu em 1996, mas eles já vinham fazendo sucesso com essas idéias desde 1992, quando saiu o primeiro paper sobre o tópico.

O mercado por SMS estava aquecido devido ao sucesso da dupla e suas idéias. Implementações desses conceitos começaram a surgir, e a face mais visível desses sitemas era… o dashboard! Mas não acabava aí, não! Os dados que eram apresentados nesses painéis vinham, em geral, dos sistemas informatizados da empresa.

  • BSC é voltado para administração empresarial;;
  • BI também;
  • BSC usa dados integrados;
  • DW, uma subseção de BI, integra dados da organização;
  • BSC apresenta dados em visualizações bacanas;
  • BI também.
  • Etc.

Entenderam o caminho que a coisa tomou? Até parece que BSC e BI estão ligados intimamente, mas o fato é que nem de longe BSC é uma solução de BI!

  • BSC foca em dados correntes e suas relações determinadas a priori, em monitorar os dados da empresa para aquilatar o consistência do planejamento estratégico e sua execução. Os dados são atualizados muito frequentemente (um dia ou menos) e, em boa parte das vezes, apenas a variação dos indicadores é acompanhada, não dos dados mais granulares. O histórico dos dados em si não é capturado, e portanto não é usado;
  • BI é voltado para acumular dados históricos e analisá-los para descobrir suas relações a posteriori, em busca de entender o negócio. Dizemos que os dados são usados para tentar modelar, matematicamente, o funcionamento da companhia. Fala-se em previsão, em estimativas, em correlações previamente ignordas entre as variáveis etc. etc. etc.

Não são coisas estranhas entre si, pois ambos usam dados gerados em sistemas informatizados (BSC menos, BI mais), mas não são a mesma coisa, ou sequer parentes próximos.

Mesmo assim formou-se, no mercado de BI, a percepção de que BSC faz parte de BI.

Ok, vamos relegar essa parte e focar na questão “empresas vendendo BSC, o pão quente do momento”. Imagine o que aconteceu: empresas de BSC, como a tal da ESM mencionada acima, tinham lá o seu produto, que era uma novidade então.

E as empresas que vendiam BI, tinham o quê para mostrar como sendo BSC? Coleta de dados e apresentação de dados – e a teoria do BSC em um livro! Quando vendedores de BSC mostravam seu produto, a aparência, a parte visual era importante. Quando os fornecedores de BI seguiam essa trilha, o que mais aparecia para os clientes eram… Os dashboards!!

Conclusão

Não posso afirmar, categoricamente, que a tecnologia de painéis de instrumentos foi incorporada ao BI por “culpa” do BSC. Mas eu posso contar para vocês que ao visitar clientes interessados em BSC, eu, gerente de soluções SAS, vendedor de BI, era cobrado para mostrar os painéis da solução SAS para BSC. Era contra esse aspecto que a solução oferecida pelo SAS era comparada.

Eu nunca consegui emplacar uma venda de BSC pelo SAS. O produto de BSC da concorrência (não-BI) era bom o bastante para anular as vantagens do SAS (integração de dados díspares e flexibilidade nos painéis) e conseguir o pedido, mesmo sendo mais caro. Na minha opinião, olhando para trás, eu diria que a concorrência tinha uma implementação formal de BSC, completa e pronta, enquanto que o SAS apenas tentava surfar nessa onda, reempacotando seu produto com outro público-alvo diferente do público regular de BI.

Só que, até então, painéis não eram coisas de BI. Caramba, não tinha nem no catálogo do SAS, que tem tudo!

Por isso, na minha humilde opinião, dashboards entraram para o rol de recursos de BI por contaminação do mercado de SMS, do qual o BSC Norton e Kaplan é um ilustre membro. Dashboards não são melhor ferramenta analítica que um cubo OLAP ou um projeto de Data Mining, mas são excelentes meios para levar informação e oferecer visões completas – para apresentação dos dados.

É isso. Até a próxima. ;-)