Inteligência de Negócios é a disciplina que busca a compreensão do funcionamento de uma organização (o conhecimento do negócio) mediante a aplicação do Método Científico. Além de insumo para aplicação do Método Científico, os dados de uma empresa prestam-se a um sem-número de funções, que podem ser realizadas por uma gama de ferramentas.

Algumas das formas de uso são notadas com maior frequência em uma organização ordinária. Vamos descrever algumas destas formas de uso de dados e ferramentas, os chamados Casos de Uso.

Caso de Uso

Um caso de uso (ou CDU para simplificar) é um modo de aplicação ou o propósito – o uso – de algo, como uma ferramentas ou uma técnica.

Como exemplo tome o caso de uso de uma panela de pressão: cozinhar alimentos a temperaturas superiores ao ponto de ebulição da água. Sempre que um alimento precisar de maior temperatura para ser adequadamente cozido, podemos usar uma panela de pressão.

Conversamente, sempre que um alimento pode ser cozido no ponto de ebulição da água, o uso de uma panela de pressão é desnecessário e pode até mesmo comprometer a qualidade do resultado.

A toda ferramenta corresponde um ou mais casos de usos com graus variados de adequação. Aplicar uma ferramenta a situações para as quais ela não possui uma adequabilidade mínima pode comprometer o resultado almejado, ou pior, pode entregar um resultado plausível enquanto oculta alguma falha intrínseca. Basta pensar no velho ditado “para martelo, tudo é prego” e imaginar que uma boa martelada pode engastar um parafuso na madeira: a qualidade da fixação será insuficiente e, mesmo aparentando estar “pregado” bem o bastante, o parafuso pode soltar-se e causar uma falha catastrófica.

Casos de Uso de Dados

Os dados produzidos nos sistemas informatizados de uma organização podem ser consumidos de várias formas e usados para várias finalidades.

Monitoração

Parte do trabalho de qualquer profissional, nos dias de hoje, é acompanhar eventos diários e responder a eles.

Entrou um novo ticket pedindo serviço? Surgiu um defeito? Um sistema sofreu pane?

Manter-se informado dos acontecimentos é parte da tarefa de monitorar o ambiente. Outra parte é examinar a situação, ou seja, os dados correntes, em busca de sinais que prenunciem o surgimento de uma situação específica. O exemplo mais banal é observar o dia no calendário: a aproximação de certas datas, que avizinham vencimentos de prazos, é uma forma de monitoração.

Algumas situações só podem ser monitoradas a partir de um conhecimento prévio, que precisa ser adquirido de antemão. Sabemos que a chance de chover aumenta quando o céu cobre-se de nuvens escuras porque tivemos a oportunidade de testemunhar a correlação entre chuva e céu nublado – com frequência o primeiro segue-se ao último – várias vezes.

Evidência

Situações surgem em que ocorrências passadas são questionadas. A forma mais prática de confirmar fatos é apresentar os dados que evidenciam o que aconteceu.

Por vezes essa evidência é direta, como um relatório de gastos ou uma lista de peças de um lote. Em outras situações a evidência é indireta. Se nenhum sistema registra a entrada do empregado em certo dia, por exemplo, e nenhum arquivo de sua estação de trabalho possui timestamp de acesso naquele dia, então é razoável supor que naquele dia ele não esteve em seu posto.

Análise

Pense no indivíduo que nunca testemunhou uma chuva na vida. Na primeira ocasião em que observar o céu escurecido – resultado da monitoração – ele não presumirá o risco maior de precipitação. Apenas depois de algumas ocorrências céu escuro/chuva é que ele poderá ser levado à concluir que a associação existe.

Essa é uma situação recorrente no funcionamento diário em qualquer organização: se não entendemos a relação entre causa e efeito, monitorar o quê? Se não temos um argumento a ser testado, provar o quê? Esse é o miolo da disciplina de Inteligência de Negócios, a que realmente agrega valor à organização ao produzir conhecimento explicitando a relação (e os parâmetros) entre causa e efeito. Essa é a mesma justificativa para erigirmos um DW, aliás.

Dados, além de servir para monitorar e para demonstrar fatos, ainda podem ser explorados e estudados em busca do conhecimento de negócio. Na minha opinião, essa classificação do uso dos dados em uma empresa explicita a separação entre os usos analíticos e operacionais.

Casos de Uso de Ferramentas de Dados

O termo genérico “ferramentas de dados” significa toda ferramenta que manuseia e/ou apresenta os dados dos sistemas informatizados de alguma maneira. Por exemplo, o próprio sistema informatizado, que produz os dados, é uma ferramenta de dados. Levado ao paroxismo, todo software é uma ferramenta de dados, já que todo software comanda uma CPU para tratar algum dado de alguma maneira. Para o propósito deste documento vamos restringir essa definição aos softwares que lidam com dados de negócio em sua forma operacional. Por exemplo, softwares que tabulam dados ou traçam gráficos.

Relatório

Uma das ferramentas mais simples para o manuseio dos dados é a exibição de listas. Esse CDU é conhecido pelo termo de relatório, pois relata, descreve, apresenta os dados. Um relatório é, por definição, uma lista de dados com rótulos nas colunas, que pode vir acompanhado de outros recursos.

Uma ferramenta de relatório pode incorporar uma quantidade de opções de apresentação, como títulos, cabeçalhos, números de páginas, gráficos ou sub-relatórios (relatórios dentro de relatórios.) Ferramentas de relatórios podem possuir alguma resposta dinâmica, como escolher o formato de saída (HTML, PDF e CSV entre outros), ou a aplicação de algum filtro em tempo de execução e até mesmo embutir URLs (links web) nos campos, tal que clicar sobre eles abrem páginas em navegadores web. Consta como tradicional a possibilidade de imprimir tais listas.

O acesso aos relatórios pode ser por meio do software instalado localmente ou via portal web e algumas soluções combinam a possibilidade de remeter um relatório renderizado diretamente para o e-mail de um usuário.

Painel de Dados

Um passo adiante do simples relatório, painéis são meios eminentemente gráficos, usados para apresentar diversas visões sobre dados em uma única área, em geral com alguma correlação entre si. Tradicionalmente associa-se à esta tecnologia a capacidade de algum tipo de interação. Por exemplo, um painel de vendas pode mudar para exibir os números por UF ao se clicar em um mapa do país.

A promessa dessa tecnologia é comunicar um volume maior de informações por meio de uma diagramação mais inteligente dos dados. Em outras palavras, um painel é a proverbial imagem que vale por mil palavras para a gestão da organização.

Análise Multidimensional

Uma ferramenta de análise multidimensional tem a capacidade de cruzar atributos em linhas e colunas, com os valores nas células resultantes desse cruzamento. Em comparação com uma ferramenta de relatório, uma ferramenta de análise multidimensional possui duas diferenças principais:

  • Exibir cabeçalhos tanto em linhas quanto em colunas, já mencionado;
  • Reorganizar a visão interativamente, com um tempo de espera mínimo.

Enquanto que ferramentas de relatórios estão limitadas a listas, que são renderizadas a partir de consultas, uma ferramenta de análise multidimensional pode criar planilhas, e respondem em segundos. Esse tipo de exploração de dados apóia processos de investigação de causa-raiz (ir de uma visão macro a uma visão micro, até achar a causa de um evento) e de entendimento de correlações entre os dados.

Se relatórios e painéis de dados sobressaem-se na apresentação dos dados, ferramentas de análises multidimensionais ajudam a descobrir o quê é interessante apresentar.

A sigla tradicional para análise multidimensional é OLAP, abreviação em inglês de Processamento Analítico On-Line.

Além da organização dos dados e da interatividade, ferramentas OLAP ainda oferecem controle sobre os níveis e o tipo de agregação. Por exemplo, podemos criar uma visão multidimensional mostrando, nas colunas, as UFs, e nas linhas os produtos. Cada célula dessa planilha indica, portanto, o total de venda de um certo produto numa certa UF. Podemos trocar UF por região, e a quantidade de colunas passará de 27 a 5. Mas também podemos manter a UF e fazer uma quebra por região, exibindo simultaneamente o UF e região para cada valor. Uma linha de células no topo (ou no fundo da planilha) pode, então, mostrar as agregações por região.

Data Mining

Esse pode ser considerado uma família de casos de uso mais do que um único CDU, cujo propósito genérico é apoiar o desenvolvimento de algum modelo matemático que “explique” os dados.

Ferramentas desta categoria costumam oferecer, entre outros recursos:

  • Estatísticas básicas: média, mediana, variância etc.;
  • Estatísticas avançadas: distribuições, ajustes de curvas, testes de regressão e hipóteses, por exemplo;
  • Análises sofisticadas, como Análise Baeysiana, clusterização, grafos, previsores como ARIMA e HoldWinters.

Ao contrário das outras ferramentas, as que implementam estes CDUs são voltadas para um público específico, dotado de habilidades específicas no tratamento de dados e construção de modelos empíricos. O nome corrente do profissional apto a aplicar este tipo de ferramenta é “cientista de dados”, mas já foi tratado por analista de data mining ou simplesmente “o estatístico”.

Os resultados de projetos para este caso de uso costumam se apresentar como algoritmos ou equações que, devidamente implementadas nos sistemas transacionais, podem operar decisões autônomas, sem supervisão humana. Um exemplo clássico dessa situação são as ofertas de crédito pré-aprovado exibidas por ATMs.

E o Pentaho?

A suite Pentaho implementa casos de uso de dados através de alguns casos de usos de ferramentas de dados.

O Pentaho oferece a possibilidade Monitorar, Reportar e Analisar dados.

Entre as ferramentas disponíveis na suite temos as capacidades de relatório (Report Designer), Painéis (BA Server) Análises Multidimensionais (Mondrian) e Data Mining (Weka.)

Cada CDU de ferramenta é implementada por um software específico. Cada CDU de dados é resultado da combinação de uma ou mais ferramentas, em geral com o BA Server no centro.

Conclusão

Os casos de uso de dados explicitam uma separação que eu fiz no primeiro post de 2016: o uso dos dados pode ser estratégico ou operacional. O CDU de Dados Análise é o único que realmente se encaixa em BI. Os outros dois podem consumir dados tanto de um DW quanto de bases transacionais, vivas. O CDU de Análise, não. A única forma de determinar a relação de causa e efeito é usando um DW e o Método Científico.

Olhando as demandas por dados que toda empresa experimenta através do ponto de vista de CDUs, podemos notar que a Suite Pentaho é uma solução completa, pois permite implementar todos os CDUs de dados através de todos os CDUs de ferramentas.

Mesmo que pareça o contrário, a intenção do post de hoje não era tecer loas ao Pentaho. Nunca escondi que sou fã da plataforma e se um dia eu decidir rasgar ceda para o Pentaho, eu o farei escancaradamente, sem pudores. Este post nasceu de um relatório que eu terminei hoje, que examinou a adequação de outra ferramenta, o [Spotfire][spotfire_bitly], à comunidade de usos e necessidades de certa empresa real. É justamente o fato de ser baseado em um relatório autêntico, de uma empresa real, que deu esse tom mais austero, mais academicista ao post. Espero que isso não espante vocês. Semana que vem volto ao modo galhofa de sempre. ;-)

Lamentavelmente para essa companhia, o Spotfire não possui uma adequabilidade tão grande às necessidades dela quanto outras ferramentas – como SAS e Pentaho – ainda mais em um patamar de custo benefício significativamente desvantajoso para o Spotfire.

Até a próxima. ;-)

Deixe uma resposta

Preencha os seus dados abaixo ou clique em um ícone para log in:

Logotipo do WordPress.com

Você está comentando utilizando sua conta WordPress.com. Sair / Alterar )

Imagem do Twitter

Você está comentando utilizando sua conta Twitter. Sair / Alterar )

Foto do Facebook

Você está comentando utilizando sua conta Facebook. Sair / Alterar )

Foto do Google+

Você está comentando utilizando sua conta Google+. Sair / Alterar )

Conectando a %s